APPLIED MECHANICS I (STATICS) BEG156CI

Year: I								Semester: I		
Teaching			Examination Scheme						Total	
Schedule									Marks	
Hours/week			Final				Internal Assessment			
			Theory		Practical		Theory Marks	Practical Marks		
L	P	T	Duration	Marks	Duration	Marks				
3	-	2	3	80	-	-	20	-	100	

Course Objective:

Course Contents:

1. Introduction: (3 hrs)

- 1.1 Definition & Scope of mechanics, Engineering mechanics and static.
- 1.2 Concepts of particle, rigid body, deformed & fluid bodies.
- 1.3 Equation of static equilibrium in 2D & 3D
- 1.4 Free body Diagram (Definition, importance & example)
- 1.5 System of units

2. Vector: (5 hrs)

- 2.1 Introduction (Vector & Scalar quantities, simple operation of vectors & their Laws, Position vectors)
- 2.2 Unit vectors in Cartesian co-ordinates.
- 2.3 Dot product (Definition, laws & applications)
- 2.4 Cross product (Definition, laws & applications)
- 2.5 Scalar and vector triple product

3. Forces: (7 hrs)

- 3.1 Definition & principles of forces
- 3.2 Types of forces (coplanar, collinear, concurrent, parallel, external & internal Forces)
- 3.3 Principle of transmissibility & its limitations.
- 3.4 Resolution & composition of forces
- 3.5 Lami's theorem, Varignon's theorem, triangle, parallelogram & polygon law of Forces
- 3.6 Moment of forces about a point & axis (In scalar & vector form)
- 3.7 Definition of couple & proof of it as a free vector
- 3.8 Resolution of force into force & a couple & vice versa.
- 3.9 Resultant of a system of forces. (Wrench, parallel, coplanar, concurrent & General)

4. Distributed Force: (5 hrs)

- 4.1 Definition & Derivation of center of gravity & centroid. (Composite figure & Direct Integration method)
- 4.2 Centroid of lines, areas and volumes.
- 4.3 Definition of second moment of area (moment of Inertia) and Radius of gyration
- 4.4 Parallel and perpendicular axis theorem, MOI of common figures (e.g. rectangle, Triangle, Circle and ellipse) and uniform thin rod
- 4.5 MOI of Built up section.
- 4.6 MOI by Direct integration method.

5. Friction: (4 hrs)

- 5.1 Introduction (Definition, Types, Cause & Effect)
- 5.2 Laws of Dry friction
- 5.3 Static friction, co-efficient of friction & angle friction
- 5.4 Condition of sliding or tipping
- 5.5 Application to static problems

6. Introduction to Structures:

(5 hrs)

- 6.1 Structural components (Beam, Frame, truss, 2-D Plate, cable, Arch, Grid)
- 6.2 Difference between plane and space structures.
- 6.3 Difference between Mechanism & Structures.
- 6.4 Types of loading & supports.
- 6.5 Determinacy (internal & external) and stability (statical & geometrical) [General Concept]

7. Introduction to Analysis of Beam:

(6 hrs)

- 7.1 Definition and types of beam
- 7.2 External and internal forces in beam
- 7.3 Definition and sign convection of axial forces, shear forces and bending moment
- 7.4 Relationship between load, shear force & Bending moment
- 7.5 Axial force, shear force & bending moment diagram

8. Introduction to Analysis of Frame:

(4 hrs)

- 8.1 Definition & type of frame (rigid, deficient, redundant)
- 8.2 Determinacy & stability
- 8.3 Axial force, shear force & bending moment diagram

9. Introduction to Analysis of Plane Truss:

(4 hrs)

- 9.1 Definition & types (according to support condition purpose of utilization, degree Of Complexity)
- 9.2 Determinacy & Stability
- 9.3 Analysis of trust (Method of joints & Method of section)

10. Introduction to Space Truss:

(2 hrs)

- 10.1 Definition
- 10.2 Tension coefficients, shear leg, tripods.
- 10.3 Analysis of simple space truss.

References

- "Engineering Mechanics"- Statics and Dynamics" Shames, I.H, 3rd edition. New Delhi Prentice Hall of India 1990.
- "Mechanics for Engineers-Statics and Dynamics"- F.P. Beer and E.R. Johnston, JR 4th Edition, Mcgraw-Hill 1987.