Theory of Structure - I BEG265CI

YEAR-II SEMESTER-II

Teaching			Examination Scheme						
Schedule			Final Internal						
Hours/			1 mai				Assessments		Total
Week			Theory		Practical		Theory Marks	Practical Marks	Marks
L	P	T	Duration	Marks	Duration	Marks	Williams	Walks	
3	2/2	3	3	80	-	-	20	25	125

Course Objective:

To familiarize the terminology and concept about the type of Determinatestructures and provide the understanding of useful analysis methods under different loading conditions.

Course Contents:

1. Introduction (2hrs)

- 1.1 Types of structures
- 1.2 Linearly elastic structures
- 1.3 Non-linearity in structural behavior
- 1.4 Methods of analysis

2. Strain Energy Method

(4hrs)

- 2.1 Strain energy and complementary strain
- 2.2 Strain energy due to gradually applied, suddenly applied and impact loads
- 2.3 Strain energy due to bending, shear and torsion
- 2.4 Displacement by method of Real work/strain energy
- 2.5 Real work from bending
- 2.6 Limitation of the method of real work

3. Virtual Work Method (5 hrs)

- 3.1 Work and complementary work
- 3.2 Direct and bending effects
- 3.3 Deflection by unit load /virtual work methods
- 3.4 Temperature effects, length adjustments and misfits
- 3.5 Combination of different effects in statically determinate beams, frames and trusses

4. Deformation of Statically Determinate Beams, Frames and Trusses (10 hrs)

- 4.1 Curvature, slope and deflection
- 4.2 Differential equation of the deflection curve.
- 4.3 Deflection by method of integration
- 4.4 Deflection by moment area method

5. Influence Lines forSimple Structures

(12 hrs)

- 5.1 Concept of influence lines
- 5.2 Influence line diagrams for reactions, bending moments and shear forces in beams
- 5.3 Influence Line Diagrams for the case of indirect load application (Panel loadings)
- 5.4 Calculation of reactions, bending moments and shear forces from the Influence line
- 5.5 Criterion for maximum reaction, shear force, bending moment in simple beams
- 5.6 Inflection diagram using train of loads
- 5.7Influence line diagrams for forces in members of plane trusses
- 5.8 Criterion for maximum axial force in a member of a plane truss

6. Statically Determinate Arches

(6 hrs)

- 6.1 Various types of arches
- 6.2 Various types of three hinged structures symmetrical and Unsymmetrical, supports at different levels, arches parabolic and circular
- 6.3 Support reactions, bending moments, normal and radial shear forces in circular and parabolicthree hinged arches
- 6.4 Introduction to influence line diagram forsupport reactions, shear forces, Bending moments and radial shear in three hinged arches

7. Cable Structure (6hrs)

- 7.1 Cable and cables bridges
- 7.2 General Cable theorem
- 7.3 Cables under uniformly distributed load
- 7.4 Elements of simple suspension bridge
 - 7.5 Suspension bridge with three-hinged stiffening girder

Laboratories:

- (i) Influence lines for beams.
- (ii) Analysis of plane frames.
- (iii) Influence line for horizontal thrust in a three-hinged arch
- (iv) Reaction on three-hinged arch under given system of loading.
- (v) Deflection of beam subjected to point load and Uniform1y distributed load.
- (vi) Experimental analysis of suspension bridge.

References:

- C. H. Norris, J. B. Wilbur & S. Utku, Elementary Structural . Analysis, 3rd Edition, McGraw Hill Company Limited, New York, 1977
- C. K. Wang, Intermediate Structural Analysis, International Student Edition, McGraw Hill Company Limited, 1989
- A. Darken, Kuznets, Structural Mechanics, Mir Publishers, Moscow
- C. B. Korea, V. V. Satyr, Experimental Methods in Structural Mechanics, Standard Publishers Distributors, Delhi, 1991